CURRICULUM

REGULATIONS - 2016

M.PHIL MATHEMATICS – CURRICULUM (FROM 2016-17 ONWARDS)

Semester	Course Code	Course Title	Lecture	Tutorial	Practical	Credit
	ZMA101	Research Methodology	4	4	0	6
	ZMA102	Algebra & Analysis	4	4	0	6
I	ZMA103	Advanced Graph Theory	4	4	0	6
		Total				18

Semester	Course Code	Course Title	Lecture	Tutorial	Practical	Credit
	ZMA201	Mathematical Statistics (Guide Paper)	4	0	0	4
	ZSW202	Teaching Learning Skills	1	2	0	2
II	ZMA202	Research Project - Dissertation	0	0	0	16
		Total				22

Total Number of Credits: 40

Semester I

COURSE CODE ZMA101			COURSE NAME RESEARCH METHODOLOGY	L 4	T 4	P 0	C 6
С	P	A					
4	0	0		L	Т	P	H
				4	4	0	8

PREREQUISITE: Basic Statistics

COURSE OUTCOMES:

Course outcomes	Domain	Level
CO1: Define and Explain data collection and thesis writing.	Cognitive	Remembering
		Understanding
CO2: <i>Apply</i> the concept of testing of hypothesis and solve the problems.	Cognitive	Applying
CO3: Apply the concept of CPM/PERT, Transportation problem,	Cognitive	Applying
Assignment problem, sequencing problem and solve the problems.		
CO4: Define and Explain steps of algorithmic research and design	Cognitive	Remembering
of experiments		Understanding
CO5: Define and Explain pedagogy and teaching skill and	Cognitive	Remembering
difference between teaching and instruction.		Understanding
UNIT I RESEARCH METHODOLOGY		18

UNIT I RESEARCH METHODOLOGY

Types of Research Process, Data Collection - Primary Data, Secondary data - Thesis writing: Thesis at Tertiary level – Writing, Planning the thesis – the general format, footnotes, tables & figures, reference & appendix.

UNIT II TEST OF HYPOTHESIS

18

Test of Hypothesis concerning means, propositions, variances, Chi Square Test, Goodness of Fit test. Non-Parametric Tests: One sample tests, Two sample tests, K-sample tests.

UNIT III OPERATIONS RESEARCH

18

CPM/PERT Analysis, Transportation Problems, Job Sequence Problems, Assignment Problems.

UNIT IV ALGORITHMIC RESEARCH

18

Algorithmic research problems – Types of solution procedure – steps of Development of Algorithm - Steps of Algorithm Research - Design of Experiments and Comparison of Algorithm Meta Heuristic for Combinatorial problems.

UNIT V PEDAGOGY AND TEACHING SKILL

Instructional Technology: Definition, Objectives and Types – Difference between Teaching and Instruction – Lecture Technique: Steps, Planning a Lecture, Delivery of a lecture – Lecture with power point presentation – Teaching skill: Definition, Meaning and Nature – Types of Teaching skills: Skill of Set Induction, Skill of Stimulus Variation, Skill of Explaining, Skill of Probing Questions, Skill of Black Board writing and Skill of Closure – Integration of Teaching Skills.

	LECTURE	TUTORIAL	TOTAL					
	60	30	90					
_	PHILIPPING AND							

REFERENCES

- 1. "Thesis & Assignment Writing" By Anderson, Berny H. Dujrston, H. Pode, Wiley Eastern Ltd., New Delhi, 1970.
- 2. "Operations Research" An Introduction by H.A. Taha Collier Macmillan International Edition, 1982.
- 3. Thomas H.Cormen, Charles E.Leiserson, Ronald L.Rivest, "Introduction to algorithms" Prentice Hall 1990.
- 4. "Research Methodology" R. Panneerselvam, PHI, New Delhi 2005.
- 5. Mangal, S.K. (2002) Essential of Teaching Learning and Information Technology, Tandon Publications, Ludhiana.
- 6. Michael D. and William (2000), Integrating Technology into Teaching and Learning: Concepts and Applications, Prentice Hall, New York.
- 7. Pandey S.K. (2005) Teaching Communication, Commonwealth Publishers, New Delhi.

COURSECODE		CODE	ZMA102	L	T	P	C
COURSE NAME		NAME	ALGEBRA & ANALYSIS	4 4		0	6
PREREQUISITE		JISITE	BASIC CONCEPTS OF COMMUTATIVE				
			ALGEBRA				
C	P	A		L	T	P	Н
4	0	0		4	4	0	8
COL	URSE (OUTCO	MES	DOMAIN	LEVEL		L
CO1: Define and explain the concept modules.			Cognitive	Remembering Understanding			
CO2: Define and Explain the concepts of Noetherian Rings.			Cognitive			mbering standing	

CO3: Define and Explain the concepts of Topological preliminaries	Cognitive	Understanding
and measurable functions.		
CO4: Define and explain Fourier Transforsms	Cognitive	Remembering Understanding
CO5: Define and explain Riemann Mapping Theorem	Cognitive	Remembering
		Understanding
TINITE I MODILI EC		10

UNIT I MODULES

18

Basic definitions – Group of homomorphisms – Direct products and sums of modules – Free modules – Vector spaces – The dual space and dual module.

UNIT II NOETHERIAN RINGS

18

Basic criteria – Associated primes – Primary decomposition - Nakayama's lemma.

UNIT III RIESZ REPRESENTATION THEOREM

18

Topological preliminaries - Riesz representation theorem – Regularity properties of Borel measures –Lebegue measure – continuity properties of measurable functions.

UNIT IV FOURIER TRANSFORSMS

18

 $Formal\ properties-Inversion\ theorem-The\ Plancherel\ theorem-Banach\ Algebra\ L^{1}$

UNIT V RIEMANN MAPPING THEOREM

18

 $\label{lem:preservation} Preservation of angles-Linear fractional transformations-Normal families-Riemann \\ Mapping Theorem.$

LECTURE	TUTORIAL	TOTAL
60	30	90

TEXT BOOKS

1. Serge Lang, "Algebra", Springer - Verlag, Revised Third Edition, 2002.

Unit – I - Chapter III: Sections 1 to 6

Unit – II - Chapter X: Sections 1 to 4.

2. W. Rudin, "Real and Complex Analysis", 3rd edition, McGraw Hill International,1986. Unit III – Chapter 2; Unit IV – Chapter 9; Unit V - Chapter 14

REFERENCES

- 1. C. Musili, "Rings and Modules", 2nd edition, Narosa, 1994.
- 2. P.B. Bhattacharya et al., "Basic Abstract Algebra", 2nd edition, Cambridge University Press, 1995.
- 3. Serge Lang," Complex Analysis", Addison Wesley, 1977.
- 4. V. Karunakaran, "Complex Analysis", 2nd edn, Narosa, New Delhi, 2005.

E REFERENCES

NMEICT repository

http://nptel.ac.in/courses

COURSECODE			ZMA 103	L	T	P	C	
COURSE NAME			ANALYSIS		4	4	0	8
PREREQUISITE								
TREREQUI								
C	P	A			L	T	P	H
4	0	0			4	8	0	12
COURSE O	UTCOMES	5		DOMAIN	LE	VEL	,	
CO1: Define of positive functions. Ex and Topologic	Cognitive		mem derst		_			
CO2: Explain The Riesz representation theorem, Regularity properties of Borel measures and Lebesgue measure				Cognitive		Remembering Understanding		
CO3: Explain Convex function and inequalities and the L^p – spaces, Approximation by continuous function				Cognitive	Remembering Understanding			
CO4:Explain Inner products and linear functional, Orthogonal sets and Trigonometric series.				Cognitive	Remembering Understanding			•
CO5: Explain Banach spaces ,Consequences of Baire's theorem ,The Hahn Banach Theorem and Poisson integral.				Cognitive		Remembering Understanding		
Unit-I Abstra] - Integration	of positive functi	ions –	Integ		24 on of complex
functions – T	he role played	by sets of mea	asure zero. Top	pological prelimi	naries			
Unit-II The	Lebesgue In	tegral					2	24
The Riesz rep	presentation th	eorem – Regul	larity propertie	es of Borel measu	res –]	Lebes	sgue	measure
Unit-III The		alities – The L	p - spaces - A	pproximation by	contin	iuous		24 etion
Unit-IV Inn							2	24
Inner produc	Inner products and linear functional – Orthogonal sets – Trigonometric series.							

Unit-V Banach Space

24

Banach spaces – Consequences of Baire's theorem – The Hahn Banach Theorem – An abstract approach to the Poisson integral.

LECTURE	TUTORIAL	TOTAL		
60	60	120		

TEXT BOOKS

Walter Rudin, Real and Complex Analysis, 3rd edition, Tata McGraw – Hill

Chapter 1: 1.1 6, 1.1 7, 1.22 – 1.41

Chapter 2: 2.3 – 2.4

Chapter 3: 3.1 - 3.17

Chapter 4: 4.1 - 4.26

Chapter 5: 5.1 - 5.10, 5.16 - 5.25

REFERENCES

1. H.L. Royden, Real Analysis(4th edition), Macmillan Publishing Company, 1993.

E REFERENCES

- 1. http://nptel.ac.in/courses/111101005/1-40
- 2. http://people.brandeis.edu/~igusa/Math205bS10/Math205b_2010Sp.html

ZMA201				4	4	0 0	8 8
С	P	A					
4	0	0		L	T	P	H
				4	8	0	12

PREREQUISITE:

COURSE OUTCOMES:

Course outcomes	Domain	Level
CO1: Define and Explain connectivity in graphs	Cognitive	Remembering
		Understanding
CO2: Apply coloring of graphs and solve problems in Vertex colorings and Edge colouring	Cognitive	Applying
CO3: Define and Explain planar graphs	Cognitive	Applying
CO4: Define and Explain Ramsey Theory	Cognitive	Remembering

		Understanding
CO5: Find different types of graph labelings for different types of	Cognitive	Remembering
graphs		Understanding

UNIT I CONNECTIVITY IN GRAPHS

24

UNIT II COLORING OF GRAPHS

24

Vertex colorings and upper bounds – Brooks' theorem – Graphs with large chromatic number – Turan's theorem – Counting proper colorings – Edge colouring – Characterization of line graphs.

UNIT III PLANAR GRAPHS

24

Embeddings and Euler's formula – Dual graphs – Kuratowski's theorem – 5 colour theorem – Crossing number.

UNIT IV RAMSEY THEORY

24

The pigeonhole principle – Ramsey's theorem – Ramsey numbers – Graph Ramsey theory. The characteristic polynomial – Linear algebra of real symmetric matrices – Eigenvalues and graph parameters – Eigenvalues of regular graphs.

UNIT V GRAPH LABELING

24

Types of labeling – graceful labeling – harmonious labeling – odd graceful, even graceful, magic labeling.

LECTURE	TUTORIAL	TOTAL
60	60	120

TEXT BOOK:

1. Douglas B. West, "Introduction to Graph Theory", Prentice Hall of India, Second Edition, 2002.

REFERENCES

- 1. Bondy J. A, and Murty U. S. R., "Graph Theory", Springer, 2008.
- 2. Balakrishnan R. and Ranganathan K., "A textbook of Graph Theory", Springer, 2012.
- 3. Graham R.L., Rothschild B.L and Spencer J.H., "Ramsey Theory", Wiley Publishers, Second Edition, 1990.
- 4. Biggs N., "Algebraic Graph Theory", Cambridge Tracts in Mathematics 67, Cambridge University

Pro	ess, 1994	4. MX8003	Algebraic Theory of Semigroups				
E RE	EFEREN	NCES					
NMI	EICT re	pository					
http:/	//nptel.a	ac.in/cours	es				
			Semester II				
COI	URSE (COURSE NAME	L	Т	P	С
	ZMA20)1	MATHEMATICAL STATISTICS	4	0	0	4
C	P	A					
4	0	0		L	Т	P	H
				4	0	0	4
PRE	REQU	ISITE: Ni	1				
COU	IRSE O	UTCOMES	S:				
	se outco			Doma		Level	
CO1	: Defir	ne and Exp	plain Estimation Theory.	Cogni	tive	Remem Underst	
CO ₂	_		lve Tests based on normal, t and f distributions	Cogni	tive	Unders	tanding
		es – Good	eans, variance and proportions – Analysis of $r \times$ ness of fit			App	lying
CO3	3: Expla	in and sol	ve Correlation And Regression.	Cogni	tive	Underst Applyir	\mathcal{L}
CO4	: Expla	in and sol	ve Design of Experiments	Cogni	tive	Underst Applyir	_
CO5	_	ain and so np charts.	lve Statistical Quality Control by X , R charts, p,	Cogni	tive	Underst Applyir	_
UNI	ΓΙ Est	imation Th	eory				12
			ness, Consistency, Efficiency and Sufficiency – M	aximur	n like	lihood	
estin	iation –	iviethod of	f moments.				
		ting Of Hy					12
			t and f distributions for testing of means, variance	e and p	ropor	tions –	
Anal	ysis of	$r \times c$ tables	- Goodness of fit.				

12

UNIT III Correlation And Regression

Multiple and Partial correlation – Method of least squares – Plane of Regression – Properties of residuals – Coefficient of multiple correlation – Coefficient of partial correlation – Multiple correlation with total and partial correlation – Regression and Partial correlations in terms of lower order co-efficient.

UNIT IV Design of Experiments

12

Analysis of variance – One way and two way classifications – Completely randomized design – Randomized block design – Latin square design.

UNIT V Statistical Quality Control

12

Analysis of variance: Control charts for measurements (X and R charts) – control charts for attributes (p, c and np charts) – Tolerance limits – Acceptance sampling, Introduction to SPSS.

LECTURE	TOTAL
60	60

TEXTBOOK

1. Gupta. S.C., and Kapoor. V.K., "Fundamentals of Mathematical Statistics", Sultan Chand and sons, Thirteenth Edition, 2014.

REFERENCES

- 1. J.E. Freund, "Mathematical Statistical", 5th Edition, Prentice Hall of India, 2001.
- 2. Jay L. Devore, "Probability and Statistics for Engineering and the Sciences",5th Edition, Thomas and Duxbury, Singapore, 2002.

COURSE CODE			COURSE NAME	L	Т	P	C
	ZSW202	2	TEACHING LEARNING SKILLS	LEARNING SKILLS 1			2
С	P	A			b		Ď
2	0	0		L	Т	P	H
	i			1	2	0	3

PREREQUISITE: Nil

COURSE OUTCOMES:

Course outcomes	Domain	Level
CO1: Define and Explain the role of a teacher in different phases of	Cognitive	Remembering
teaching.		Understanding
CO2: Define and Explain various micro teaching skills.	Cognitive	Remembering

		Understanding
CO3: Define and Explain the Learning and different methods of teaching.	Cognitive	Remembering Understanding
CO4: Define and Explain the importance of teaching devices and techniques.	Cognitive	Remembering Understanding
CO5: Apply the concept and solve the problems using SPSS.	Cognitive	Applying

UNIT I CONCEPT OF TEACHING

6

Teaching- an art or a science? - Relationship between Teaching and Learning. Analysis of the concept of Teaching - Teaching as a deliberately - planned process: Analysis in terms of teaching skills - General Model of instruction – Pre active, Interactive and Post active - phases and Teachers role in them.

UNIT II SKILLS IN TEACHING

6

Microteaching skills – need, procedure, cycle of operations and uses – set induction, stimulus variation, reinforcement, questioning, illustrating, explaining demonstrating, using black board, link lesson and closure

UNIT III CONCEPTS OF LEARNING

6

Nature and importance of learning – Individual differences in learning - Learning Curves- Factors influencing the learning- theories of learning - Transfer of Learning- Learning by Imitation.

UNIT IV TECHNIQUES OF TEACHING-LEARNING – LARGE GROUP

6

Lecturing - Place in Higher Education - Purposes served - Basic skills - Evaluation of Effectiveness. Demonstration - Video conferencing - Method of organizing - Advantages and disadvantages as a teaching learning process. Use of Audio Visual Aids – Importance - General Principles of use - Advantages and disadvantages.

Techniques of teaching-learning - Small group

Importance, Skills of using, Evaluation of Effectiveness of the following:

Group discussion - Collaborative learning - Seminar - Debate - Group investigation - Role play.

UNIT V INTRODUCTION TO SPSS

6

Introduction to SPSS - Data analysis with SPSS: general aspects, workflow, critical issues - SPSS: general description, functions, menus, commands - SPSS file management.

LECTURE	TUTORIAL	TOTAL
10	20	30

REFERENCES

- 1. Davis, Irork (1971), The Management of learning, McGraw Hill, London.
- 2. Judith, I. (2008). Learners, learning and educational activity. London: Routledge.
- 3. Graham, R. (2008). Psychology: The key concepts. London: Routledge.
- 4. Samuel, W. (2007). The intellectual and moral development of the present age. U.S: Kessing Pub Co.
- 5. Chobra, R. K. (2006). Elements of educational psychology. New Delhi: Arise Publishers.
- 6. Langer, J. and Applebee, A.N. (1987). How writing shapes thinking: A Study of Teaching and Learning, National Council of Teachers of English.
- 7. Lindfors, J. (1984). How children learn or how teachers teach? A Profound confusion: Language Arts, 61 (6), 600-606.
- 8. Vygotsky, L.S. Thought and Language, Cambridge, MA: MIT Press, 1962.
- 9. Field A., Discovering Statistics Using SPSS, Fourth Edition, SAGE, 2013

Resource Websites:

- http://www.thirteen.org/edonline/concept2class/constructivism/index.html.
- www.ipn.uni-kiel.de/projekte/esera/book/b001-cha.pdf
- http://www.ericdigests.org/1999-3/theory.htm
- http://www.ncrel.org/sdrs/areas/issues/students/atrisk/at6lk36.htm
- http://saskschoolboards.ca/research/instruction/97-07.htm
- http://www.ed.psu.edu/CI/Journals/1998AETS/t1_7_freeman.rtf
- http://en.wikipedia.org/wiki/Constructivist_teaching_methods
- http://www.ncrel.org/sdrs/areas/issues/envrnmnt/drugfree/sa3const.htm
- http://vathena.arc.nasa.gov/project/teacher/construc.html
- http://www.grout.demon.co.uk/Barbara/chreods.htm
- http://vathena.arc.nasa.gov/project/document/teacher.html
- <u>http://www.disciplineassociates.com/ClassroomDiscipline_101.aspx</u>